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Abstract

Co-ordination control is the synthesized movment of two or more autonomous entities

to achieve a desired goal. In this Thesis, we present a formation control problem in the

context of the Purcell’s swimmer, the primitive micro-swimmer capable of generating lo-

comotion at a micro-scopic scale. As it is with all co-ordination problems, first task in

this report has been to investigate the communication protocol between these two micro-

robotic swimmers. Using this and only this protocol we first present co-ordination prob-

lem wherein the two-swimmers start executing a circular trajectory around each other. Not

only a control formulation we also prove the asymptotic stability of this circular formation

problem by using Lyapunov’s Theorem. In the next body of work we extend this circu-

lar formulation to achieve a Leader-Follower type of formation in a two-body swimmer

wherein the Leader is following an unknown trajectory subject to a bounded velocity. The

follower is shown knowing this velocity bound tries to track this Leader using our control

formulation. We also extend these control algorithms for state constrained problems to

keep our side angles within the desired range of values using a simple transformation.
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Chapter 1

Introduction

There has recently been a strong impetus from the engineering community to study or-

ganisms and mechanisms that are able to swim in a microscopic scale in a fluid. The

reason behind this is simple, a study at this microscopic scale would enable us engineers

to emulate these microscopic designs for robotic applications. These robotic applications

not only span medicinal health care but would also turn out to be useful in critical defence

missions.

An introductory frame-work to understand these microscopic organisms was first ex-

Figure 1.1: Image of an amoeboid

plained by the Nobel Laureate Physicist E.M Purcell in his popular lecture, “ life at low

Reynolds number ”[12]. In this lecture Dr. Purcell laid down important laws that govern

a micro-organisms motion in a fluid medium.

According to Purcell due to the sheer small size of these microscopic organisms, the

Reynolds number of these microscopic swimming bodies is very small. By definition we

say that Reynolds number measures the ratio of the inertial forces to the viscous forces

that are being exerted on the microscopic body due to the fluid medium. Hence, a small

Reynolds number, (Re ≪ 1) implies that the net inertial force on the microscopic swim-

mers almost zero. Not only this, Purcell even went a step further and said that even the

net external torque on these swimmers turns out to be zero too.

1



2 Introduction

This simple but important approximation proposed by Purcell not only helps us to get

a qualitative understanding of micro-swimmers but also does help in approximating the

Navier-Stokes, thus rendering it solvable to help model low Reynolds number motion.

∇u = 0

η∇2u = ∇p +
�
�
��7

0

ρ
∂u
∂t
+�����:0
ρ(u.∇)u⇒ η∇2u = ∇p

(1.1)

An important consequence of the low Reynolds number approximation is the Scallop the-

orem, which states that a sequence of configuration changes in the swimmer followed by

the exact same sequence in reverse would reverse in a zero net displacement. An example

for the scallop theorem can be seen in the figure 1.2 below where a small periodic flap

results in a net zero displacement. From the perspective of of control theorists, Scallop

theorem is simply a drift-less control affine systems from a modelling perspective which

hugely helps in verifying the control models of these swimmers. In accordance with the

Figure 1.2: Scallop Theorem(α1 > α2)

Scallop theorem, the simplest design which is able to generate motion in a 2D infinite

newtonian fluid is the Purcell’s swimmer as shown in the figure 1.3. To escape the lim-

itations of the scallop theorem, Purcell’s swimmer has three independent but identical

slender links. The angle connecting the middle link to the first link from the left is α1 and

similarly the angle connecting the middle link the tertiary one is labelled as α2.

From control theory perspective, we define the set of controls as the ability to change the

angles, α1 and α2 by appropriate change in its angular velocity, i.e u1 = α̇1, u2 = α̇2.

To model this, we will need to first determine the lateral and longitudinal force on a

slender rod moving in a Newtonian fluid [3] and then using the low Reynolds number

approximation that we discussed earlier we can come up with the control model of the
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Figure 1.3: Schematic of the Purcell swimmer

Purcell’s swimmer [7] as follows,

ẋ

ẏ

θ̇

α̇1

α̇2


=

 A(α1, α2)

I2


u1

u2

 (1.2)

where, ẋ is the direction along the middle link and the ẏ is the direction along the direc-

tion perpendicular to the middle link. θ̇ is the rate of change in angle of the middle link

with respect to an inertial X-axis as shown in the figure. It is important to note here that,

A(α1, α2) is the map which transforms the swimmers kinematics from the control space

to the velocity. This is often regarded as the affine connection form in the differential

geometric control literature.

In this report we are going to discuss a control formulation to co-ordinate two or more

Purcell swimmers to achieve different formations.

Microscopic robotic swimmers are envision to undertake many potential future applica-

tions in healthcare, defence, manufacturing sector. In almost all of these sectors we may

need to deploy these micro-robots in synchronization to efficiently realize its applications.

This is motivation behind engineering a formation control problem.

It is important to note here that the research to actually fabricate these micro-swimmers

is still at a primitive stage with a acute shortage of actuators working at this scale. So this

report is entirely a theoretical study with the communication protocol being adopted from

formation control literture and moving forward.



4 Introduction

In the next chapter we start reviewing the relevant literature in formation control which

talks about different control strategies and heuristics that are employed in a formation

control problem. In particular we review two important papers that we think cover all the

important aspects of formation control theory.



Chapter 2

Literature Survey

There are four major approaches to formation control with respect to the algorithm

proposed to implement them, behavorial([11]), virtual structure([1]), Artificial potential

trenches([5]) and leader-follower type of formations([8]).

Behavioural based approaches specify the type of behaviours that the formation should

follow over and a above maintaining it’s own formation. Virtual structure attributes a

pre-defined virtual trajectory that each of the agent in the formation should follow, the

controllers are designed in order to achieve this particular trajectory and hence the cor-

responding formation. In queues and potential trench approach, each of the two robot

formation is represented as a queue and a particular formation is achieved using artificial

potential trench to achieve that formation. In the leader-formation approach, the leader

tracks a pre-defined path and the formation tries to achieve a particular geometric config-

uration with respect to it.

In the section 2.1, we talk about one such leader formation problem for an Unmanned

Aerial Vehicle(UAVs). In section 2.2 we again talk about the formation problem for a

formation of Autonomous Underwater Vehicle(AUV) using virtual structure approach.

2.1 Leader-Follower Approach

UAV(Unmanned Aerial Vehicle) are a miniature versions of an aircraft which are oper-

ated remotely. These vehicles have found applications in earthquake surveillance, border

surveying among other things. Many of these applications would require a syncronised

co-ordination between swarms of these UAVs for an efficent performance. This article [8]

tries to model a planar formation problem for a team of two such UAVs.

We use the Frennet-Serret equations to model these UAVs. In Frennet-Serret equations

the UAV is assumed to be moving with a unit velocity(x̄) and the control effort(u, v, w) is

5



6 Literature Survey

spent in changing this direction of motion of the UAV.

˙̄r = x̄

˙̄x = ȳu − z̄v

˙̄y = −x̄u − ȳw
˙̄z = x̄v − ȳw

(2.1)

Here, ȳ, z̄ are the normal and co-normal vectors of UAVs motion as shown in the figure

2.1

For a planar form of these equations we just put v, w = 0. This is illustrated in figure 2.2

Figure 2.1: Control law terms explained

˙̄r = x̄

˙̄x = ȳu

˙̄y = −x̄u

(2.2)

2.1.1 Two body planar formation

As shown in the figure 2.2 is a two agent UAV system, where each of them are

represented as a point mass. The dynamics of each of these UAVs can be described these

equations 2.3 below.

˙̄r1 = x̄1

˙̄x1 = ȳ1u1

˙̄y1 = −x̄1u1

˙̄r2 = x̄2

˙̄x2 = ȳ2u2

˙̄y2 = −x̄2u2

(2.3)
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Figure 2.2: planar formation schematic

Figure 2.3: Types of UAV formation

Definition 1 (Planar Formation Problem). Given the initial state of two UAVs, r̄1 and r̄2

respectively. We wish to formulate a control strategy u1 and u2 such that this team of two

UAVs achieves either one of the formation as described by figure 2.3

The authors propose the following control law for the system of two UAVs as follows

with their dynamics as described in equation 2.2.

u1 = −η(|r̄|)(− r̄
|r̄| · x̄1)(− r̄

|r̄| · ȳ1) − f (|r̄|)( r̄
|r̄| · ȳ1) + µ(|r̄|)x̄2 · ȳ1

u2 = −η(|r̄|)(− r̄
|r̄| · x̄2)(− r̄

|r̄| · ȳ2) − f (|r̄|)(− r̄
|r̄| · ȳ2) + µ(|r̄|)x̄1 · ȳ2

(2.4)

In the above control law the functions, µ(.), f (.) and η(.) are Lipschitz continuous. Also,

f (.) satisfies the following condition.

lim
ρ→0

f (ρ) = ∞

lim
ρ→0

∫ ρ

ρ̃

f (ρ̂)dρ̂ = ∞, for some ρ̃ > 0
(2.5)

In the above control law, u1 and u2.

1. The term µ(|r|)x2 · y1 and µ(|r|)x1 · y2 respectively tries to drive the system to a

common orientation.
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2. The terms with f (.) are very important to prevent collision between the two UAVs

and to achieve an appropriate separation.

3. The term µ(.) tries to align both the UAVs in either a parallel or a horizontal orien-

tation.

The afore mentioned control law is elegant in the sense that it also helps reduce the dynam-

ics of the combined system of two UAVs into the variables important for our formation

problem. We can realise this by looking at the following transformations

r̄ = |r̄|ieiΨ = r̄2 − r̄1

x̄1 = eiθ1

x̄2 = eiθ2

ϕ1 = θ1 − Ψ

ϕ2 = θ2 − Ψ

ρ = |r̄|

(2.6)

Using these transformations, we get the following relations for ρ̇, Ψ̇, θ̇1 and θ̇2

ρ̇ = sin ϕ2 − sin ϕ1

Ψ̇ = −1
ρ

(cos ϕ2 − cos ϕ1)

θ̇1 = u1 = −η(ρ) sin ϕ1 cos ϕ1 + f (ρ) cos ϕ1 + µ(ρ) sin (θ2 − θ1)

θ̇2 = u2 = −η(ρ) sin ϕ2 cos ϕ2 + f (ρ) cos ϕ2 + µ(ρ) sin (θ1 − θ2)

(2.7)

Since, ϕ1 = Ψ − θ1 and ϕ2 = Ψ − θ2. We can just reduce the dynamics of this combined

system in terms of just three variables, (ρ, ϕ1, ϕ2)

ρ̇ = sin ϕ2 − sin ϕ1

ϕ̇1 = −η(ρ) sin ϕ1 cos ϕ1 + f (ρ) cos ϕ1 + µ(ρ) sin (ϕ2 − ϕ1) +
1
ρ

(cos ϕ2 − cos ϕ1)

ϕ̇2 = −η(ρ) sin ϕ2 cos ϕ2 + f (ρ) cos ϕ2 + µ(ρ) sin (ϕ1 − ϕ2) +
1
ρ

(cos ϕ2 − cos ϕ1)

(2.8)

To check for stability consider the following candidate function

V(ρ, ϕ1, ϕ2) = − log (cos(ϕ1 − ϕ2) + 1) + h(ρ) (2.9)

Notice thatr Here, dh(ρ)
dρ (ρ) = f (ρ). Due to the proposed structure of f (ρ) as given by 2.5

and the fact that − log (cos(ϕ1 − ϕ2) + 1) = 0 at (ϕ1 − ϕ2) = π/2. This function indeed

turns out to be positive and zero at equilibirium point. Notice that this Lyapunov function

is only valid for all the points where |ϕ1 − ϕ2| , π

Λ = {(ρ, ϕ1, ϕ2)||ϕ1 − ϕ2| , π and 0 < ρ < ∞} (2.10)
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To prove the stability of the control law, we need to show that the time derivative of this

Lyapunov function is negative semi-definite.

˙V(ρ, ϕ1, ϕ2) =
sin (ϕ1 − ϕ2)

1 + cos (ϕ1 − ϕ2)
(ϕ̇2 − ϕ̇1) + f (ρ)ρ̇

=
sin (ϕ1 − ϕ2)

1 + cos (ϕ1 − ϕ2)
[−η(ρ)(sin ϕ1 cos ϕ1 − sin ϕ2 cos ϕ2) − f (ρ)(cos ϕ1 + cos ϕ2)

+ µ(ρ)((sin (ϕ2 − ϕ1) − sin (ϕ1 − ϕ2)))] + f (ρ)(sin(ϕ2) − sin(ϕ1))

(2.11)

Using the identity, sin(ϕ2 −ϕ1)(cos(ϕ2)+ cos(ϕ1))− (cos(ϕ2 −ϕ1)+ 1)(sin ϕ2 − sin ϕ1) = 0,

we get the following

˙V(ρ, ϕ1, ϕ2) = − 1
cos (ϕ1 − ϕ2) + 1

[sin (ϕ1 − ϕ2)(2µ(ρ) sin(ϕ1 − ϕ2)) + η(ρ)/2(sin (2ϕ1) − sin 2ϕ2)]

Provided as long as we choose 2µ(ρ) > η(ρ), we can easily prove stability using the

following identity

sin(ϕ2 − ϕ1)(sin(ϕ2 − ϕ1) +
1
2

(sin(2ϕ2) − sin(2ϕ1))) =
1
2

[(cos(ϕ1) + cos(ϕ2))2(sin ϕ1 − sin ϕ2)2

+ (sin2 ϕ1 − sin2 ϕ2)2]

. This proves that ˙V(ρ, ϕ1, ϕ2) ≤ 0. Using the Lasalle’s Invariance principle, we can show

that the largest invariant set, M is as given below

M = {(ρ, π
2
,
π

2
), ∀ρ} ∪ {(ρ,−π

2
,−π

2
), ∀ρ} ∪ {(ρo, 0, 0), f (ρ0) = 0} ∩Ω

wherein Λ is as defined above in 2.10

As pointed out ealier the Lyapunov candidate function in this case fails to analyse equi-

libirum for all types of initial conditions. In order to analyse this system as a whole, we

need pursue a general and co-ordinate free approach which is presented in the next sec-

tion, wherein it is shown that each configuration of a single UAV can be represented in a

compact form using a SE(2) Lie group representation.

2.1.2 Co-ordinate free approach

Any point, (x̄, ȳ, r̄) in the state space of a UAV can be represented with the following

matrix group structure.

g =

x̄ ȳ r̄

0 0 1

 (2.12)

Since, x̄ and ȳ is a unit tangent and normal vectors, and r̄ represents the inertial position

of the UAV. This matrix structure has a Special Euclidean form(SE(2))
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For a system of two UAVs with g1 =

x̄1 ȳ1 r̄1

0 0 1

, g2 =

x̄2 ȳ2 r̄2

0 0 1

 fo rms the following

configuration manifold.

Mcon f ig = {(g1, g2) ∈ S E(2) × S E(2)|r1 , r2}

The dynamics of each of this UAV can be represented as follows,

ġ1 = g1ξ1 = g1(A0 + A1u1)

ġ2 = g2ξ2 = g2(A0 + A1u2)
(2.13)

Where, ξ1, ξ2 ∈ g is the Lie algebra of G, and the matrices A0 and A1 are as follows,

A0 =


0 0 1

0 0 0

0 0 0

 A1 =


0 −1 0

−1 0 0

0 0 0

 (2.14)

We can represent the configuration of the first UAV with respect to other with the follow-

ing transformation. This transformation turns out to be important to reduce the dynamics

of this body UAV system.

g = g−1
1 g2 (2.15)

g =


x̄T

1 −r̄1 · x̄1

ȳT
2 −r̄1 · ȳ1

0 0 1


x̄2 ȳ2 r̄2

0 0 1

 =

x̄1 · x̄2 x̄1 · ȳ2 (r̄2 − r̄1) · x̄1

ȳ1 · x̄2 ȳ1 · ȳ2 (r̄2 − r̄1) · ȳ1

0 0 1

 (2.16)

Similarly, we have the inverse as follows,

g−1 = g
−1
2 g1 =


x̄2 · x̄1 x̄2 · ȳ1 (r̄2 − r̄1) · x̄1

ȳ2 · x̄1 ȳ2 · ȳ1 (r̄2 − r̄1) · ȳ1

0 0 1

 (2.17)

From equations 2.16 and 2.17 we have the following mathematical relations, 1

r =
√
g2

13 + g
2
23 =

√
(g13)2 + (g23)2

g11 = g22 = g
11 = g22

g12 = −g21 = g
21 = −g12

1 = g2
11 + g

2
12

(2.18)

Similarly, the control law can also be written in terms of g and g−1 as follows,

u1(g) = −η(r)(
g13g23

r2 ) + f (r)(
g23

r
) + µ(r)g21

u2(g) = −η(r)(
g13g23

r2 ) + f (r)(
g23

r
) + µ(r)g21

(2.19)

1gi j is an element of g and gi j belongs to g−1
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From equations 2.15, 2.13 and 2.19 we get the following reduced G-invariant dynamics,

ġ = −g−1
1 ġ1g

−1
1 g2 + g

−1
1 ġ2 = gξ (2.20)

Where, ξ = ξ2 − Adg−1ξ1. The equilibrium of this combined system is just ġ = 0. We get,

ξ(ge) = ξ2(ge) − g−1
e ξ1(ge)ge = 0⇒ ξ2(ge)g−1

e = g
−1
e ξ1(ge) (2.21)

Solving, this we get,

u2 = u1

g11 = 1 − g23u2

g12 = g
13u1

(2.22)

Simplifying this above set of equations, we get the following relations,

1 = (1 − g23u1)2 + g2
13u2

1

0 = u1[(g2
13 + g

2
23)u1 − 2g23]

u1 = 0 u1 =
2g23

g2
13+g

2
23

(2.23)

If u1 = 0 then we get u2 = 0. We thus, get x̄1 = x̄2. If u2 = u1 = 2g23/r2. This suggests

that UAVs converge to a circular trajectory in the state space.. This is illustrated in the

figure 2.3.

In the next section we review the leader-follower planar formation strategy for a system of

two AUVs (Autonomous Underwater Vehicles) using virtual structure based approach.,

[11]. In this article, the follower only gets the position measurement of the leader and

has no idea about it’s velocity or control model of the AUV. This is what motivated the

authors to go for a virtual structure based approach for this system of two AUVs. The

virtual structure approach creates a reference vehicle from the position measurement

of the leader and using this particular reference vehicle a virtual vehicle is designed so

that the follower may attain the position of this virtual vehicles. The virtual vehicle

is designed in such a way that it converges to the reference and hence attaining a

leader-follower formation at infinite time [4].

2.2 Virtual Structure Approach

We define the dynamics of the AUV in it’s body fixed frame by the following equation(s).

Mν̇ +C(ν)ν + D(ν)ν + g(η) = τ + ω

η̇ = R(Ψ)ν
(2.24)
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where,ν − [u, v, r] and η = [x, y, ϕ] are generalized velocity and position of the AUV., M,

C(η) and D(η) are Inertia, Coriolis, Centripetal forces respectively, g(η) the buyoancy and

gravitational forces and moments and τ is the input torques to this system and finally ω

represent the bounded distrubances and R(Ψ) is as follows,

R(Ψ) =


cos(Ψ) − sin(Ψ) 0

sin(Ψ) cos(Ψ) 0

0 0 1

 (2.25)

2.2.1 Design of Virtual Vehicle

Figure 2.4: Reference vehicle design

As shown in the figure 2.4, the reference vehicle is to be kept at a distance of d

from the leader. Note that we designate the leader, reference, virtual, follower by the

symbols,m, r, v, f respectively. We define the the position and dynamics of the reference

vehicle as follows,

ηr = ηm + R(Ψm)


d cos(θ)

d sin(θ)

0


η̇r = R(Ψm)vr

(2.26)
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where, vr = [um − d cos(θ)rm, vm − d sin(θ)rm, rm]

Based on the reference vehicle trajectory (2.26), we define the virtual vehicle dynamics

as follows,

η̇v = R(Ψv)vv (2.27)

where, vv = R−1(Ψv)(β1(ϕ) + β2(ϕ)) and β1(ϕ) =

[λ1tanh(ϕ1/λ1), λ2tanh(ϕ2/λ2), λ3tanh(ϕ3/λ3)] and β2(ϕ) =

[k1tanh(ϕ1/k1), k2tanh(ϕ2/k2), k3tanh(ϕ3/k3)] and ϕ = [ϕ1, ϕ2, ϕ3] and

ϕ̇ = −β1(ϕ) − diag(k1, k2, k3)(ηv − ηr + ϕ).

It is further shown that the this virtual vehicle is Uniform Semiglobal Practical

Asymptotic Stable (USPAS)[2] by considering the Lyapunov candidate function as

follows,

Ve(t) =
1
2

rT
e re + ϕ1chTϕch (2.28)

where, ϕch = [
√

k1 log(cosh(ϕ1/k1)),
√

k2 log(cosh(ϕ2/k2)),
√

k3 log(cosh(ϕ3/k3))]. It

turns out that we can stabilize our system for ||re|| < ϵ for any ϵ > 0 by selecting ap-

propriate gains, i.e V̇e ≤ 0 for ||re|| < ϵ.
Using velocity information from this virtual vehicle, we now design a position tracking

control for the follower. We perform the following transformations,

ρ =
√

(xv − x f )2 + (yv − y f )2

x f − xv = −ρ cos(φ + α)

y f − yv = −ρ sin(φ + α)

φ + α = arctan(
yv − y f

xv − x f
)

(2.29)

Using this transformations, the dynamics turn out to be as follows,

ρ̇ = −u f cos(α) − v f sin(α) + Uv cos(χ)

α̇ =
sin(α)
ρ

u f −
cos(α)
ρ

v f − r f − Uv

sin(χ)
ρ

(2.30)

where, χ is as shown in figure 2.4

2.2.2 Kinematic Control

Since, the velocities of the AUV is passively controlled via equation 2.24. It is

possible to regulate r f such that α→ 0. By using this simple feedback law,

r f =
sin(α)
ρ

u f −
cos(α)
ρ

v f − Uv

sin(χ)
ρ
+ K4α (2.31)



14 Literature Survey

where, K4 > 0 it can be easily shown that limt→∞ α = 0 by taking the candidate Lyapunov

function V1 = α
2/2

Considering the dynamics 2.30 as a cascaded system. We design the control u f based on

the nominal form for these equations as follows,

ρ̇ = −u f + Uv cos(χ)

u f = K5ρ̄ + Uv cos(χ)
(2.32)

where, ρ̄ = ρ−δ and K5 > 0 Using the expressions for u f and r f we can express the closed

loop dynamics of v f as follows,

v̇ f = −h1(.)v f + h2(.)ρ + h3(.) + ω′2 (2.33)

where, h1, h2, h3 are some function of state space. It can be shown that, limt→∞ ρ̄ = 0

using the following candidate Lyapunov function,

V1(ρ, v f ) =
1
2
ρ2 +

1
2
v2

f (2.34)

2.2.3 Dynamic Control

For Dynamic control of the follower AUV. Consider the following error variable,

z1 = u f − αu and z2 = r f − αr.where, u f and r f be the virtual control inputs respectively,

and αu and αr be the corresponding virtual controls. It can be shown that (ρ̄ → 0, v f →
0,z1 → 0 z2 → 0) using the following candiate Lyapunov function

V2 =
1
2
ρ̄2 +

1
2
v2

f +
1
2

m11z2
1 +

1
2

m33z2
2 (2.35)

In the next chapter, we propose a control law for a system of two Purcell’s swimmer which

attains a circular formation. We later go on to show it’s stability using the Lyapunov

function approach. We also show a leader-follower type of formation for a two-agent

Purcell swimmer and prove its stability using the first principles.



Chapter 3

Purcell’s Formation Control problem

In this chapter we talk about two different types of formation for a pair of Purcell swim-

mers. In this first formation, we have these two swimmers arbitarily initialised and the

job of the controller designers like us would be formulate a control strategy in order for

these two swimmers to start circulating around a common center.

The ideas of a circular formation is built upon in the section after that wherein, we again

have two Purcell’s swimmers but the first swimmer(leader swimmer) is moving on a tra-

jectory that is smooth but unknown to the second swimmer(follower swimmer) and job of

control design is to come up with a control strategy to keep up with the leader at a fixed

relative orientation.

Before we begin this section there are some notational freedom that we have undertaken

to make the math look simpler to understand.

1. All the two side angles of any one the swimmer is represented as, α = (α1, α2)

2. Even the two control inputs of each of the swimmer will be represented in a vec-

torised form, U = (u1, u2)

3.1 Circular formation

In this section we first talk about the kinematic equations of the Purcell swimmer that

we are going to be working with. We then talk in-depth about the circular formation that

we wish to achieve using a two-agent Purcell’s swimmer. There are many questions that

arises when one talks about a circular formation.

The rationale behind choosing a circular formation for the co-ordination problem

was to understand fully the non-linearities in the Purcell swimmers kinematic equations.

A simple leader-follower behavior then becomes a simple extension to this problem defi-

nition

15
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3.1.1 The Purcell swimmer

The kinematic equations for each Purcell swimmer [7] as shown in the figure 3.1 is

as follows, 

ẋ

ẏ

θ̇

α̇1

α̇2


=

A(α)

I


u1

u2

 (3.1)

where, α = (α1, α2) and α1, α2 represent each of the side angle of the Purcell swimmer.

Figure 3.1: Schematic of the Purcell’s swimmer

u1 = α̇1 and u2 = α̇2 are the control inputs to the system and A(α) is the mapping from

the shape velocity, (α̇1, α̇2) to group velocity(ẋ, ẏ, θ̇). Note that in these equations above,

ẋ and ẏ are the velocity in the local co-ordinate system, i.e ẋ is along the middle link and

ẏ is perpendicular to the middle link.

To solve the co-ordination control problem, we need these kinematic set of equations

in an inertial frame of reference. As it turns out, we can indeed convert these kinematic
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set of equations to an inertial one using a simple transformation as under,

Ẋ

Ẏ

θ̇

α̇1

α̇2


=

R(θ)A(α)

I


u1

u2



R(θ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



(3.2)

Note that in this case, Ẋ is aligned along the inertial x-axis and Ẏ is the direction repre-

senting y-axis as shown in the figure 3.1

3.1.2 Circular Formation

For a formation control problem in this particular case, we have two such Purcell’s

swimmers and we wish to come up with a control strategy such that these two swimmers

start executing a circular trajectory around a common center with the diameter being R0.

Now, for a two-swimmer system to start executing a circular formation without some

information about the other swimmer is just not possible. In this particular problem,

each of these swimmer have the information about the radial separation(ρ) between the

other swimmer as well as the angular orientation of this other swimmer with respect to

itself(ϕ2). This can be clearly seen in the figure ??. Using these these external information

variables along with the swimmers’ internal variables like α1, α2 each of the swimmer is

supposed to come up with an control formulation such that the swimmers start executing a

circular formation with the diameter equal to R0 and the angular velocity of 1 with respect

to other swimmer.

It is important to note here that with this information variables it is not possible

to ensure that the center of this circular formation to be a stationary point. This is due

to the fact using the ρ, ϕ2 information it is not possible to extract information about the

relative orientation of the two swimmers with respect to each other. This won’t allow us

to know whether the velocities vectors of each of the swimmers are anti-parallel to each

other which in-turn won’t allow the swimmers to execute a circular formation around a

stationery point.
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3.1.3 Transformations

In this section, we talk about the transformations that are necessary to understand

the control strategy for a circular formation of the Purcell swimmer.

Let the position of each of the Purcell swimmer(abbreviated as 1 and 2 respectively)

be r̄1 and r̄2 respectively. Thus, we have the following relationship between r̄1, r̄2, ρ, ϕ1.

r̄2 − r̄1 = ρ(cos(ϕ2)î + sin(ϕ2) ĵ) (3.3)

where, î and ĵ are unit vectors along X and Y axis respectively. Time derivative of the

above equation yields us the following relation

ρ̇ = [cos(ϕ2) sin(ϕ2)] • (˙̄r2 − ˙̄r1)

ϕ̇2 =
1
ρ

[− sin(ϕ2) cos(ϕ2)] • (˙̄r2 − ˙̄r1)
(3.4)

In the context of the Purcell swimmer 3.2, ˙̄r1 and ˙̄r2 can be written down as follows,

˙̄r1 =

cos(θ1) − sin(θ1)

sin(θ1) cos(θ1)

 (A(α1)2×2)U1

˙̄r2 =

cos(θ2) − sin(θ2)

sin(θ2) cos(θ2)

 (A(α2))2×2U2

(3.5)

where, A(α)2×2 corresponds to the first two rows of the A(α). α1 = (α11, α12) corresponds

to both the link angles of the first swimmer and α2 = (α21, α22) corresponds to both the

angles of the second swimmer. Also, U1 = (u11, u12) and U2 = (u21, u22) corresponds to

the control inputs for each of the swimmer.

Substituting 3.5 in equation 3.4 and simplifying the equations we get the following

results, (Note: ϕ2 = ϕ1 + π)

ρ̇ = [cos(θ2 − ϕ2) − sin(θ2 − ϕ2)](A(α2)2×2)U2

+ [cos(θ1 − ϕ1) − sin(θ1 − ϕ1)](A(α2))2×2)U1

(3.6)

ϕ̇1 =
1
ρ

([sin(θ2 − ϕ2) cos(θ2 − ϕ2)](A(α2)2×2)U2

+ [sin(θ1 − ϕ1) cos(θ1 − ϕ1)](A(α1)2×2)U1)
(3.7)

3.1.4 Control Law

For attaining the circular formation, we propose the following control law

U1 = Kr(R0 − ρ)

sin(ψ1(α1) −Ω1)

sin(ψ2(α1) −Ω1)

 + K(α1)

−Λ2(α1) sin(ψ2(α1) −Ω1)

Λ1(α1) sin(ψ1(α1) −Ω1)

 (3.8)
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U2 = Kr(R0 − ρ)

sin(ψ1(α2) −Ω2)

sin(ψ2(α2) −Ω2)

 + K(α2)

−Λ2(α2) sin(ψ2(α2) −Ω2)

Λ1(α2) sin(ψ1(α2) −Ω2)

 (3.9)

Where, Ω1 = θ1 − ϕ1 and Ω2 = θ2 − ϕ2

Kr is a positive constant

Λi(α) =
√

A2
1i(α) + A2i(α)2

sin(Ψi(α)) =
A1i(α)
Λi(α)

cos(Ψi(α)) =
A2i(α)
Λi(α)

(3.10)

where, i ∈ {1, 2}

K(α) =
1
2

(
R0

Λ1(α)Λ2(α) sin(Ψ1(α)) − Ψ2(α)
) (3.11)

To get an intuition behind the terms like Λ1(α),Ψ1(α),Ψ2(α). Consider the kinematic

equation of the Purcell swimmer as shown in equation 3.1 with u1 = u and u2 = 0.ẋ
ẏ

 = A1(α)u (3.12)

where, A1(.) is the first column of the A matrix. Using 3.10 we can re-write this column

as follows, ẋ
ẏ

 = Λ1(α)

sin(Ψ1(α))

cos(Ψ1(α))

 u (3.13)

So a better understanding of the Ψ1(α) is that it gives us the direction in which the control

u1 maneuvers a system if u2 = 0. A similar explaination follows for Ψ2(α). Now, if we

write the kinematic equations of the Purcell swimmer together, consider this form,ẋ
ẏ

 = Λ1(α)

sin(Ψ1(α))

cos(Ψ1(α))

 u1 + Λ2(α)

sin(Ψ2(α))

cos(Ψ2(α))

 u2 (3.14)

There are two terms in the control law 3.8. The first term in each of these two control law

is solely responsible behind attaining a radial separation of R0. The second term however

is used to generate an angular velocity in this two-agent swimmer.

Now, a natural question arises regarding the intuition behind this peculiar form of

the control law. To get a better understanding, consider the following figure 3.2. Now,

as mentioned by the equation 3.14 above the net direction of motion of one particular

swimmer is the vector sum of the motion generated by each of the actuators in the Purcell

swimmer. Now, the amount that each of control inputs contribute towards increasing or
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decreasing the radial distance ρ depends upon the projection from the

sin(Ψ1(α))

cos(Ψ1(α))

 on

the

 cos(Ω)

− sin(Ω)

 vector. This projection may be positive or negative depending upon the

angle between these two vectors.

Consider the case when, ρ > R0 and the angle between each of the vectors men-

tioned above is obtuse. So, in this particular case the projection becomes negative which

implies that the distance(ρ) will keep on increasing irrespective of the value of ρ. To keep

this from happening we substitute u1 by the value of the projection, i.e sin(ψ1(α) − Ω)

so that the actual value of the projection between turns out to be positive which we later

later scale it by Kr(R0 − ρ) to ensure the correction direction of increase or decrease in

ρ. It is important to note that whenever ρ = R0 the first term vanishes. Thus, the second

Figure 3.2: schematic of the terms in the control law

term was added such that it provides no contribution to the projection on the

 cos(Ω)

− sin(Ω)


plus it helps in generating an angular velocity to the combined system.
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A peculiar thing about this control law 3.8 is the fact that it helps reduce the no of

variables to 7.

ρ̇

Ω̇1

Ω̇2

α̇1

α̇2


=



[cos(θ2 − ϕ2) − sin(θ2 − ϕ2)](A(α2)2×2)U2 + [cos(θ1 − ϕ1) − sin(θ1 − ϕ1)](A(α2))2×2)U1

1
ρ
([sin(θ2 − ϕ2) cos(θ2 − ϕ2)](A(α2)2×2)U2 + [sin(θ1 − ϕ1) cos(θ1 − ϕ1)](A(α1)2×2)U1)

A3(α1)U1 − ϕ̇1

A3(α2)U2 − ϕ̇1

U1

U2


(3.15)

where, U1 and U2 are defined in 3.8 and Ai(α) represents the ith row in the A matrix.

3.1.5 Convergence

In order to prove stability of this control formulation we are currently using a Lya-

punov’s second theorem. Lyapunov’s second theorem says that if you a have a positive

definite function(say V(x)) as a function of your state space and you can show that the

time derivative of this Lyapunov function is less than zero then it can be inferred that this

function indeed goes to the equilibrium. In this particular problem we first show using

Lyapunov’s approach that the system indeed does tend to a radial separation of R0. We

later also show that as the system tends to a radial separation of R0 the combined angular

velocity of this two-agent system goes to 1.

In order to first demonstrate that the system indeed does tend to a radial separation

of R0, consider the following Lyapunov function

V(ρ, ϕ, θ1, θ2, α1, α2) =
1
2

(ρ − R0)2 (3.16)

the time derivative of this Lyapunov function is as follows,

V̇(ρ, ϕ, θ1, θ2, α1, α2) = 2(ρ − R0)ρ̇ (3.17)

Substituting the control law 3.8 in the kinematic transformation equation 3.6 we get ρ̇

following,

ρ̇ = −Kr(ρ − R0)(
i=1∑
i=0

j=1∑
j=0

Λi(α j) sin2(Ψi(α j) −Ω j)) (3.18)

Substituting this equation in derivative of Lyapunov function

V̇(ρ, ϕ, θ1, θ2, α1, α2) = −Kr(ρ − R0)2(
i=1∑
i=0

j=1∑
j=0

Λi(α j) sin2(Ψi(α j) −Ω j)) (3.19)

Since clearly V̇(ρ) ≤ 0 we need to use LaSalle’s invariance principle to classify asymptotic

stability which is stated as follows,[10]
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Theorem 1. Let Θ ⊂ D ⊂ Rn be a compact positively invariant set with respect to the

system dynamics. Let V : D → R be a continuously differentiable function such that

V̇ ≤ 0 in Θ. Let E ⊂ Θ be the set of all points in where V̇ = 0. Let M ⊂ E be the largest

invariant set in E. Then every solution starting in Θ approaches M as t → ∞

To use this theorem we first need to determine a compact positively invariant set

which we claim to be Θ = {(ρ, α1, α2,Ω1,Ω2)|V(ρ) ≤ c} for some c > 0. Since V̇(ρ) ≤ 0

any trajectory starting in Θ won’t be able to exit this set due to negative semidefi-

niteness of V(.) which makes the set compact as well as invariant. For this function,

V̇(ρ, ϕ, θ1, θ2, α1, α2) = 0 spans the following set.

E = {(ρ, α1, α2,Ω1,Ω2)|ρ = R0}∪

{(ρ, α1, α2,Ω1,Ω2)|Ω1 = Ψ1(α1) = Ψ2(α1),Ω2 = Ψ1(α2) = Ψ2(α2)} ∩ Θ

Using LaSalle’s invariance principle, we can determine the equilibirium of the system by

determining the largest invariant set. To determine the largest invariant set, consider the

definition of invariant set which states an invariant set is a set wherein a system which

starts from any point in that set remains in that set even under the influence of the dynam-

ical system.

To determine the Invariant set, consider the first set i.e, E1 = {(ρ, α1, α2,Ω1,Ω2)|ρ =
R0}∩Θ. For trajectory, γ(t) starting with γ(0) ∈ E1 we always get ρ̇ = 0(3.15). This result

implies as long as the trajectory starts in E1 initial condition is (̇ρ) = 0 over all the points

in E1. Thus, E1 is an invariant set in itself.

Now consider the second set, E2 = {(ρ, α1, α2,Ω1,Ω2)|Ω1 = Ψ1(α1) = Ψ2(α1),Ω2 =

Ψ1(α2) = Ψ2(α2)}∩Θ. Using the definition of this set, if we substitute the value in the 3.15

we get,(ρ̇, ϕ̇, θ̇1, θ̇2, α̇1, α̇2) = (0, 0, 0, 0, 0, 0, 0, 0). Thus, again in this case any trajectory

starting in E2 will remain in E2. Hence, by this argument even E2 is an invariant set.

Thus, the largest Invariant set from the set of V̇(ρ) = 0 is as follows,

M = E1 ∪ E2

Let us now further talk about maybe a physical intuition behind these invariance. First

consider the second invariant set,

E2 = {(ρ, α1, α2,Ω1,Ω2)|α1, α2 ∈ S ,Ω1 = Ψ1(α1),Ω2 = Ψ1(α2)} (3.20)

where, S = {α|Ψ1(α) = Ψ2(α)} To get a better intuition of what this set represents

consider the figure 3.2. If Ψ1(α) = Ω = Ψ2(α) this implies each of the control input,

U1 = α̇1 is unable to project its direction of motion to aid in the increase or decrease in ρ̇.
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Thus, it cannot be used to generate the specified value of R0.

In fact, it is also possible to determine the set S using symmetry operations in the

dynamical model of the swimmer [6] which leads to the following claim.

S = {(α,−α)| α ∈ [−π, π]} (3.21)

Proof. To show that this is indeed the solution to the equation Ψ1(α,−α) = Ψ2(α,−α).

Consider the axial and front-back symmetries in the Purcell swimmer [6] as follows,

A(−α1, α2) =


−1 0 0

0 1 0

0 0 1

 A(α1, α2)

A(α2, α1) =


−1 0 0

0 1 0

0 0 −1

 A(α1, α2)

0 1

1 0


(3.22)

If we substitute an element of set S as given 3.21 through the symmetry operations as

mentioned in equation 3.22. We get the following,
−1 0 0

0 1 0

0 0 1

 A(α,−α) =


−1 0 0

0 1 0

0 0 −1

 A(α,−α)

0 1

1 0

 (3.23)

The above algebra gives us the following required solution.

A11(α,−α) = A12(α,−α)

A21(α,−α) = A22(α,−α)
⇒ Ψ1(α,−α) = Ψ2(α,−α)

This completes the proof. □

The findings of this claim has been verified by numerically solving Ψ1(α) = Ψ2(α)

which can be observed in figure 3.3.

The first equilibrium set, E1 specifies the states that corresponds to the desired sep-

aration of R0. This set is defined as follows,

E1 = {(ρ, α1, α2,Ω1,Ω2)|ρ = R0} (3.24)

Our approach to determine the equilibrium is as follows, we first linearize our system

about the set E2. If we can show that every point in E2 constitutes an unstable equilibrium

then it can be concluded in an obvious way that any trajectory tends to the set E2.

Since, E2 is a continuum we discretise this set into a finite number of points and we
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Figure 3.3: α such that Ψ1(α) = Ψ2(α)

checked for Eigen values at each of these points in the set E2. It turns out that in all these

cases there exists atleast one Eigen value whose real part is greater than zero which makes

all of these points in E2 unstable (theorem 4.7 [10]). Note that since we only checked for

instability at a finite number of points in the set E2 we still need to prove this result for all

the points in these set which hasn’t been proven till now.

The argument that the two-agent system will converge to the first equilibrium, E1

simply follows from the argument that since the two-agent swimmer has to converge to

one of the equilibirium points, E1 or E2. But since, E2 turned out to be unstable, the

system will indeed converge to a equilibirium separation of R0, i.e the set E1.

To show that the system indeed does converge to an angular velocity of 1 rad/s. We

show that as the radial separation tends to R0 the combined angular velocity tends to 1.

When, ρ→ R0 we get,

ϕ̇1 =
1
R0

(K(α1)Λ1(α1)Λ2(α1) sin(ψ2(α1) − ψ1(α1)) (3.25)

+ K(α2)Λ1(α2)Λ2(α2) sin(ψ2(α2) − ψ1(α2))

Substituting the value of K(α) as mentioned earlier we get,

ϕ̇2 = 1 (3.26)

The result ϕ̇2 = 1 finally proves that this control law 3.8 does indeed converge to a fixed

radial separation of R0 and an angular velocity of 1 rad/s.

In conclusion, in this section we saw a control law that demonstrated the conver-

gence of a two-agent swimmers which were arbitrarily initialized to a radial separation of

R0 and angular velocity of 1 rad/s. In the next section, we build up on this work to demon-

strate a control formulation for a two-agent swimmer to demonstrate a leader-follower
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type of behavior wherein the leader the moving along any predefined trajectory and the

follower unaware of this trajectory is expected to attain a fixed geometrical configuration

with respect to the leader.

3.2 Leader-Follower separation

Leader follower formation are the essence of formation control problems. This is due to

the fact that any formation problem consisting of N different bodies can be divided into

smaller Leader-Follower sub-problems to further solve the formation problem.

As explained earlier, In a leader-follower formation the leading swimmer is moving along

a pre-defined trajectory, γ(t) is the state space and the job of the follower is to attain a

fixed geometrical configuration with respect to the leader without the prior knowledge

about the leader’s trajectory. This relative geometric configuration is highly dependent

based on the information sharing protocol between the leader and the follower but in

many cases this relative configuration is about maintaining fixed radial distance, ρ and the

angular separation, ϕ between between the leader and the follower as shown in the figure

3.4. In this particular problem the geometric configuration that we are talking about in

this case is to attain a fixed radial distance, R0 and a fixed angular separation, ϕ0.

Before moving ahead we are going to be assuming that the leader trajectory is upper

bounded by Vmax. To actually get an understanding of what we mean by the last statement

consider a scenario wherein leader swimmer is following the trajectory, γ(t) = (t, t2). So

the velocity of this swimmer, γ′(t) = (1, 2t). It is very clear from looking at γ′(t) that the

velocity of the leader keeps on increasing as t → ∞. This means that in order to keep

up with this trajectory we need to apply an infinite amount of control actuation to the

follower. Since, it is not practical solution to apply an infinite amount of control we are

going ahead with a simple assumption that, we keep the norm of the velocity of the leader

bounded which has been stated below.

Assumption 1. The magnitude of velocity of the leader at any point of time is bounded

||γ′(t)||2 ≤ Vmax ∀t ≥ 0 (3.27)
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Figure 3.4: Schematic of a Leader-follower behavior

3.2.1 Control Law

UF =

 cos(Ψ2−Ω)
Λ1 sin(Ψ1−Ψ2)

− cos(Ψ1−Ω)
Λ2 sin(Ψ1−Ψ2)

Kr(R0 − ρ) − KV sgn(R0 − ρ)+ sin(Ψ2−Ω)
Λ1 sin(Ψ1−Ψ2)

− sin(Ψ1−Ω)
Λ2 sin(Ψ1−Ψ2)

Kϕ(ϕ0 − ϕ) − KV sgn(ϕ0 − ϕ)

(3.28)

where, Ψi,Λi is as defined in equation 3.10, Ω = θF − ϕ and sgn(.) is the signum function

and KV > Vmax

Note that there are two terms in the control law 3.28. The first term which consists

entirely of ρ terms helps in attaining a radial separation of R0. Second term consists

entirely of ϕ helps in attaining the fixed angular orientation ϕ0.

To understand the term

 cos(Ψ2−Ω)
Λ1 sin(Ψ1−Ψ2)

cos(Ψ1−Ω)
Λ2 sin(Ψ1−Ψ2)

 term. We know that the projection of u1

on the ρ axis is sin(Ψ1 − Ω) and similarly u2 is sin(Ψ2 − Ω). Thus, the value of

ρ̇ = Λ1 sin(Ψ1 − Ω)u1 + Λ2 sin(Ψ2 − Ω)u2. If we substitute the first term in the

control law gives us a unit velocity in direction of ρ̇ = 1, this is later multiplied by

Kr(R0 − ρ)−KV sgn(R0 − ρ) to make sure the radial separation is increasing or decreasing.

To check for stability of this control law, consider the following Lyapunov function

V(ρ, ϕ) =
1
2

(ρ − R0)2 +
1
2

(ϕ − ϕ0)2 (3.29)

The time derivative of this Lyapunov function gives us the following,

V̇(ρ, ϕ)) = (ρ − R0)ρ̇ + (ϕ − ϕ0)ϕ̇
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where,

ρ̇ = γ′(t) •

cos(ϕ)

sin(ϕ)

 −
cos(ϕ − θF)

sin(ϕ − θF)

 (A(αF))2×2UF

ϕ̇ =
1
ρ

(γ′(t) •

− sin(ϕ)

cos(ϕ)

 −
− sin(ϕ − θF)

cos(ϕ − θF)]

 (A(αF))2×2UF)

(3.30)

Substituting the control law, UF from 3.28 and using

V̇(ρ, ϕ) =

(ρ − R0)(γ′(t)

cos(ϕ)

sin(ϕ)

 − (−KV sgn(R0 − ρ) + Kr(R0 − ρ)))

+
1
ρ

(ϕ − ϕ0)(γ′(t)

− sin(ϕ)

cos(ϕ)

 − (−KV sgn(ϕ0 − ϕ) + Kϕ(ϕ0 − ϕ)))

(3.31)

To further analyse this consider the following four cases,

1. ρ > R0 and ϕ > ϕ0

Using the above relation we can approximate

γ′(t)

cos(ϕ)

sin(ϕ)

 < Vmax γ′(t)

− sin(ϕ)

cos(ϕ)

 < Vmax (3.32)

Using this inequality we can rewrite the time derivative of the Lyapunov function

as follows

V̇(ρ, ϕ) = −Kr(ρ − R0)2 + Kϕ(ϕ − ϕ0)2 − (KV − Vmax)(ρ − R0) − (KV − Vmax)
ϕ − ϕ0

ρ

(3.33)

Since, KV > Vmax V̇(ρ, ϕ) < 0

2. ρ < R0 and ϕ > ϕ0

Using this relation, we can make the following approximations,

γ′(t)

cos(ϕ)

sin(ϕ)

 ≥ −Vmax γ′(t)

− sin(ϕ)

cos(ϕ)

 ≤ Vmax (3.34)

Using these approximations we get the following value for V̇(ρ, ϕ)

V̇(ρ, ϕ) = −Kr(ρ − R0)2 + Kϕ(ϕ − ϕ0)2 − (KV − Vmax)(R0 − ρ) − (KV − Vmax)
ϕ − ϕ0

ρ

(3.35)



28 Purcell’s Formation Control problem

3. ρ < R0 and ϕ < ϕ0

Again as before the following approximations can be made with respect to the as-

sumptions 3.27.

γ′(t)

cos(ϕ)

sin(ϕ)

 ≥ −Vmax γ′(t)

− sin(ϕ)

cos(ϕ)

 ≥ −Vmax (3.36)

Using these assumptions, we get V̇ is as follows,

V̇(ρ, ϕ) = −Kr(ρ − R0)2 + Kϕ(ϕ − ϕ0)2 − (KV − Vmax)(R0 − ρ) − (KV − Vmax)
ϕ0 − ϕ
ρ

(3.37)

4. ρ > R0 and ϕ < ϕ0

Again as before the following approximations can be made with respect to the as-

sumptions 3.27.

γ′(t)

cos(ϕ)

sin(ϕ)

 ≤ Vmax γ′(t)

− sin(ϕ)

cos(ϕ)

 ≥ −Vmax (3.38)

Using these we get the following,

V̇(ρ, ϕ) = −Kr(ρ − R0)2 + Kϕ(ϕ − ϕ0)2 − (KV − Vmax)(ρ − R0) − (KV − Vmax)
ϕ0 − ϕ
ρ

(3.39)

Thus, in all the four cases, the Lyapunov function turns out to be less than zero for all

KV > Vmax. In case of ρ = R0 and ϕ = ϕ0 with V̇ = 0 at ρ = R0 and ϕ = ϕ0. Hence,

it is proved that this control law indeed tends to a radial separation of R0 and angular

orientation of ϕ0. This completes the result.

It is currently very difficult to fabricate the Purcell’s swimmer. But one of the pos-

sible limitations that we feel while fabricating the swimmer would to ensure a full ro-

tational freedom to the links connecting the swimmer(α1, α2 ∈ [−π/2, π/2)). Also, it is

always advisable to use minimal amount of control energy as possible in order to make

this formation problem more efficient. In the next section we exactly talk about all these

things. We first talk about the optimal cost that we seek to minimize along with attaining

the formation. We also talk about the possible issues that we need to first figure out before

actually going on to solve this optimal control problem.

3.3 State Constrained Problem

The research to fabricate Purcell’s swimmer is still at a primitive stage today with much

of the research actually going about to designing actuators at this size. However, we do
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believe that in a practical application there will be some constraint physical constraint on

the swimmer which we hope to incorporate in this section.

One of the simplest possible constraint that one could think of would be a limit

to the movement of the angles, α1, α2 in the swimmer. For example while designing a

macro-prototype of the Purcell swimmer in our previous work [9] the side angles were

constrained from −π/2 to π/2. In this section, we need to talk about leveraging our

previous control algorithms in-order for them to satisfy this state inequality constraints.

One of the interesting part of the control algorithms that were explained earlier did

not involve any specific assumptions about the Purcell swimmer in general. This special-

ity will be exploited for the state constrained problem by a simple linear transformation.

Suppose in the formation control problems that were mentioned earlier, we wish to con-

strain the side angles within a range of β1 to β2. i.e α1, α2 ∈ [β1, β2]. To get around this,

consider a simple transformation T : [−π, π]→ [β1, β2] as follows,

T (α′) = β1 ∗ (
α′ + π

2π
) + β2 (3.40)

Using this simple transformation we can simply replace the angles α1, α2 by this simple

transformation. As follows,



Ẋ

Ẏ

θ̇

α̇′1

α̇′2


=


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


A(T (α′1),T (α′2))

I


u1 ∗ (β1/2π)

u2 ∗ (β1/2π)

 (3.41)

Now, If we could simply call A(T (α′1),T (α′2)) = A(α′) and u′1 = u1 ∗ (β1/2π), u′2 =

u2 ∗ (β1/2π). We get a new set of equations that looks pretty similar to the old one as

follows, 

Ẋ

Ẏ

θ̇

α̇′1

α̇′2


=


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


A′(α′)I


u′1u′2

 (3.42)

It can be noted here that the these equations look pretty similar to the ones that we started

working with initially and the formation control algorithms that we described earlier can
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be easily implemented keeping these in mind.

In the next section we summarise the results that we obtained after running our

control algorithms as described in this chapter. We will also try to specify the potential

pitfalls that were either observed or faced by us while going through the simulations.



Chapter 4

Results and Discussions

In this chapter we summarise the simulation results for the control algorithms that we

proposed in the last chapter. In the next section we start talking about the circular forma-

tion problem that ran on our systems. In the section after this, we will be talking about

the Leader-Follower kind of formation control results which will be later followed by the

state constrained problem.

4.1 Circular formation

For the circular formation algorithm which was discussed in the earlier chapter we ini-

tialise the initial states of both the swimmers using a normal distribution and ran the sim-

ulations over at-least 10 runs before surmising our results here. In our circular formation

problem we want to show that our control algorithm is able to attain a radial separation of

R0 = 3.0 which is shown in the figure 4.1. As shown in the figure 4.2 is the variation of

control input with time. There are also variation of the side angles α1, α2 with time which

is as shown in the figure 4.3, 4.4.

4.2 Leader Follower Formation

As shown in the figure 4.5 is the variation of the distance, ρ versus time steps where each

time step is equivalent to 10−3 seconds. There are two important things to note about

this, first, this control formulation does attain the desired radial separation of R0 = 6.0

but it does so after a significant amount of semi-periodic kind of variation. We believe

that two reasons could be attributed to this. The first one is the sin(Ψ1 − Ψ2) term in the

denominator of the control law. We know that, the zeros of this function is the α1+α2 = 0

line which the function will invariably cross. Hence, we can see spikes that is due to

these dip in the dynamical system manifold.
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Figure 4.1: ρ vs time

Figure 4.2: U1,U2 vs time

Since, γ(t) is the unknown trajectory with a bounded velocity, we try our simulations

for two different trajectories of the leader. The first of these is the sinusoidal motion in

the state space as shown in the figure 4.7. As shown in the figure are the relevant ρ vs

time and ϕ vs time steps as shown in the figure 4.6, 4.5. As can be seen in the ρ vs time

plot, we can see that plot hovers around the desired separation of R0 = 6.0, ϕ0 = π/3 but

does-not attain it completely. This is because the γ(t) = (t, cos(10t)) changes direction

very frequently and hence it takes time to catch up with it.

In contrast to this, we also simulated our Leader-Follower formation on a simple

straight line curve, γ(t) = (t, t) as shown in the figure 4.10. Subsequent ρ, ϕ can be seen
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Figure 4.3: α1 vs time

Figure 4.4: α2 vs time

in figure 4.8, 4.9 respectively. Again since, the direction of γ(t) we see that ρ plot doesnot

take a lot of time to catch up with the desired separation.

It is important to note here that all the plots here were generated using random

state initialisation. However, it is observed that the simulations does work better with

normal state initialisation than a uniform initialisation which is something that needs to

be investigated.
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Figure 4.5: ρ vs time steps

Figure 4.6: ϕ vs time steps

4.3 State Constrained Problem

In the constrained problem we wish to constrain our state space to a α1, α2 ∈ [−pi/2, π/2]

range. Hence the transformation that was proposed simply becomes, T (α′)′ = 2 ∗ α. We

tried our simulations with the circular formation with a radial separation of R0 = 3.0 but

with a state constraint as described above. The figure 4.11 is the plot of distance vs time

steps which does reach the desired radial separation. However, the interesting plots are

those of α1 and α2 with time as shown in the figures 4.12, 4.13 respectively. It can be
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Figure 4.7: γ(t) = (t, cos(10t))

Figure 4.8: ρ vs time steps

seen clearly that these are constrained to required constraint.

A similar plot is shown for a leader-follower formation with state-constraints. We

simulate the state-constraint for γ(t) = (t, cos(10t)). It can be seen easily from figures

4.14, 4.17 the plots of distance and ϕ with time and it does achieve the desired separation.

It should be noted from, 4.15, 4.16 that the side angles does remain in the desired range

but it does fluctuate a lot.
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Figure 4.9: ϕ vs time steps

Figure 4.10: XL vs YL

4.4 Conclusion

In this report we saw two types of formation which was achieved using a pair of Purcell’s

swimmers. In the first kind of formation, there was an attempt to achieve a circular kind

of formation for a pair of Purcell’s swimmers. We also show that there is a equilibrium

point in the proposed control law which we characterize using symmetry operations on

the Purcell’s swimmers as mentioned in [6]. We further show the working of our control

simulations by randomly initializing state variables.

In the next kind of formation, we talked about a leader swimmer which was moving with
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Figure 4.11: ρ vs time(State Constrained)

Figure 4.12: α1 vs time(State Constrained)

a bounded velocity but unknown to the follower. Using a simple Lyapunov function we

showed that the time derivative is negative for this swimmer but like before this also has

equilibrium associated with it. We also show using simulations that the follower does

manage to achieve the desired radial separation.

For future work, we wish to complete the proof of this formation problem to present a

complete result on effectiveness of this control law. We wish to also expand this formation

problem for a system of N-such swimmers to realise its potential application pitfalls.
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Figure 4.13: α2 vs time(State Constrained)

Figure 4.14: ρ vs time(State Constrained)
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Figure 4.15: αF1 vs time(State Constrained)

Figure 4.16: αF2 vs time(State Constrained)
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Figure 4.17: ϕ vs time(State Constrained)
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