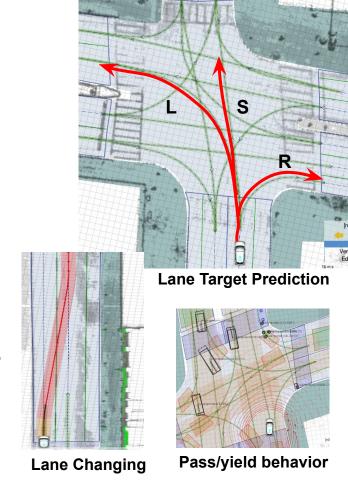
MIXTURE OF EXPERTS MODEL FOR TRAJECTORY PREDICTION

PULKIT KATDARE

15 AUGUST, 2019

PREDICTION TEAM

- Model possible future states of the world
- Planner uses to enable safe and natural driving by better anticipating interactions with others
- Flexible models support different behaviors in multiple cities/countries (Boston, SG, Vegas)



OVERVIEW

- We use different kind of models based on
 - Physics
 - Micro-planners
 - Machine learning

 Each of these models are generally well-suited for different kinds of motion

 Can we leverage these models to hopefully improve our results?

TRAJECTORY PREDICTION MODEL

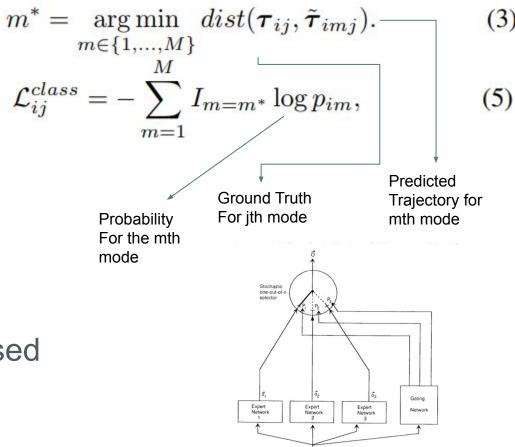
TOWARDS MULTIPLE PREDICTIONS

- Impossible to predict exact trajectories for vehicles
- Is it possible to leverage the models in our repository along with their probability to improve prediction
- Could help planning team develop risk-aware algorithms

RELATED WORK

- Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks (Cui et al.)
- 2. Adaptive Mixture of Local Experts (Jacobs et al.)

- [1]: FCN for multi-modal prediction
- [2]: Mixture of Expert based architecture

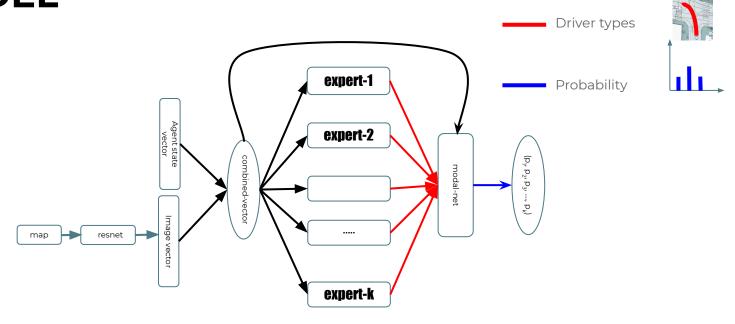


APPROACHES

1. END-TO-END MIXTURE-OF-EXPERTS MODEL

2. FROZEN MOE MODEL

END-TO-END MIXTURE-OF-EXPERTS (MOE) MODEL



END-TO-END MODEL

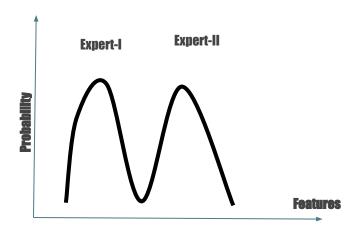
$$\mathcal{L}(Z,\tau) = \sum_{i=1}^{k} p_i L(E_k(Z), \tilde{\tau})$$

Z: input to the network

т: ground truth

E k(.): output by a specific expert-k

Adaptive Mixture of Local Experts (Jacobs et al.)



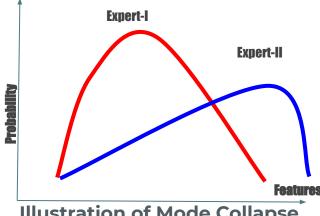
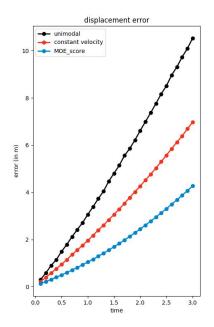
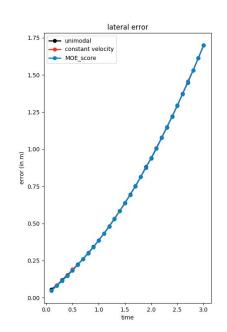
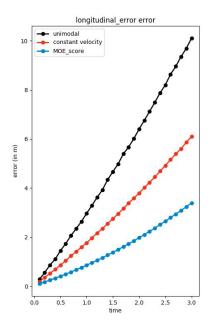


Illustration of Mode Collapse

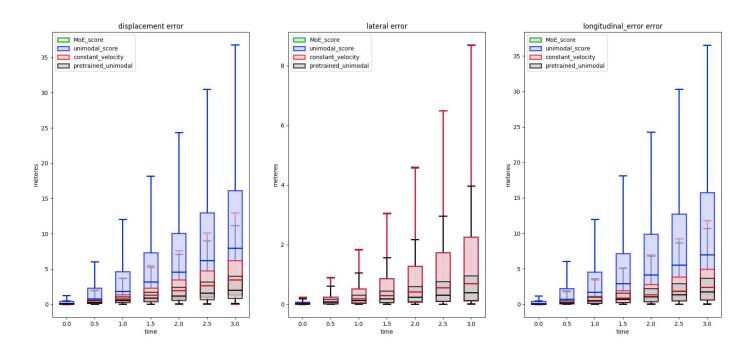
EXPERTS: CONSTANT VELOCITY, VEHICLES (TRAIN TRACKS: 300K VEHICLES)



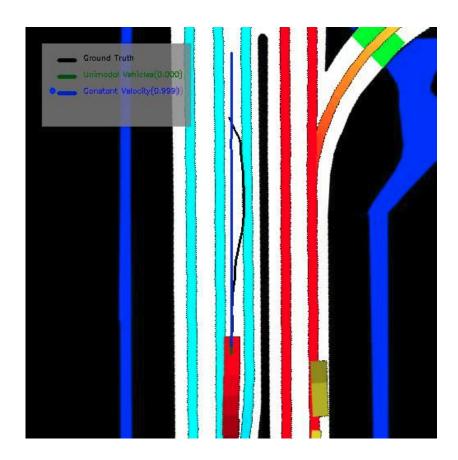




EXPERTS: CONSTANT VELOCITY, VEHICLES (TRAIN TRACKS: 300K VEHICLES)



RESULTS



RESULTS

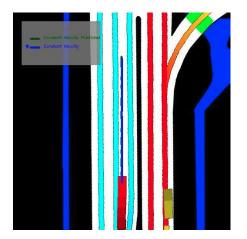


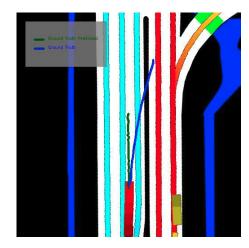
CONCLUSION

Individual experts perform worse than the unimodal ones

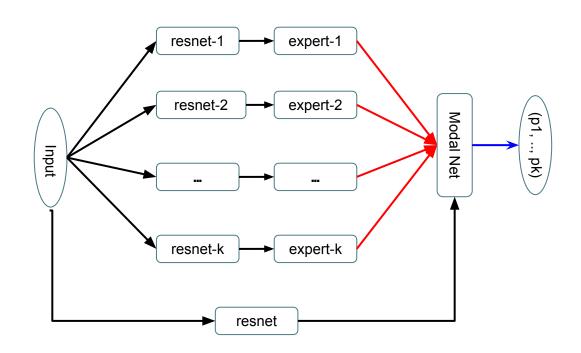
- Constant velocity is the dominant prediction
- Model complexity of two models are different

 Leverage existing models to learn a probability distributions over driver types

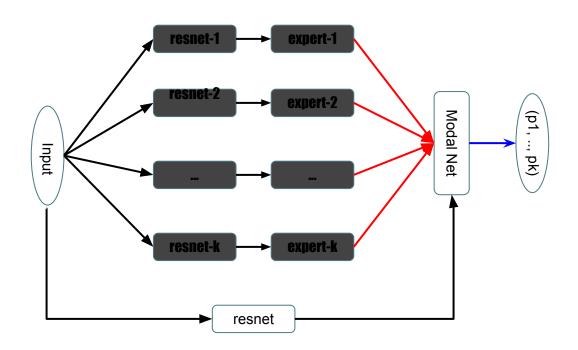


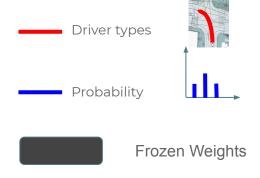


FROZEN MOE MODEL



FROZEN MOE MODEL





Predicted Trajectory for ith mode

TRAINING THE DISCRIMINATOR

Proposes a loss function just for discriminator training [1]

$$k^* = rg min_{i \in \{1,2,..,k\}} dist(au_{ij}, ilde{ au_j}) \longrightarrow rac{Ground}{Truth}$$

$$\mathcal{L}_{ij}^{class} = -\sum_{i \in \{1,2,\ldots,k\}} I_{i=i^*} \log(p_{im})$$
 Probability For the mth mode

In our particular case, the dist function is a smooth L1-norm

EXPERIMENTS

1. Experts: Constant Velocity, Unimodal

Train Tracks: 300K, 3 Million

Training Data: Vehicle Tracks

2. Experts: Vehicles, Pedestrian, Cyclists, Constant Velocity

Train Tracks: 600k, 3 Million, 5 Million

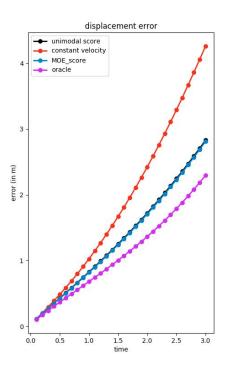
Training Data: Vehicle, Pedestrian and Cyclists Tracks

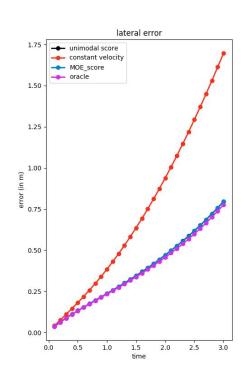
3. Experts: Pedestrians, Vehicles, Unclassified

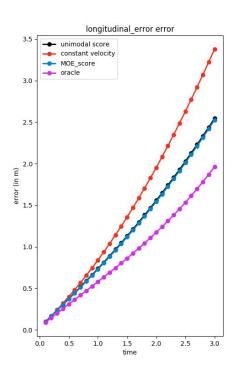
Train Tracks: 6 Million

Training Data: Pedestrians, Vehicles, Unclassified Tracks

EXPERTS: CONSTANT VELOCITY, VEHICLES (TRAIN TRACKS: 300K)

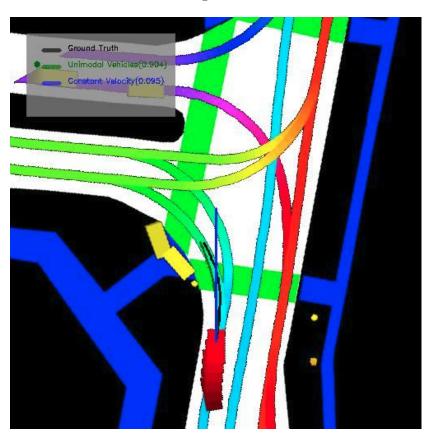






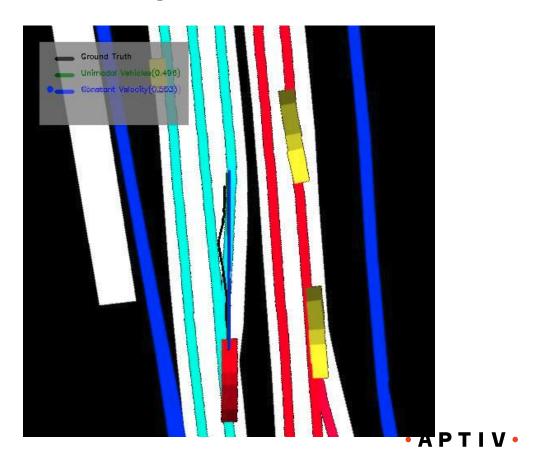
RESULTS (TRAIN TRACKS: 300K)

Unimodal > Constant Velocity Predicted: Unimodal *



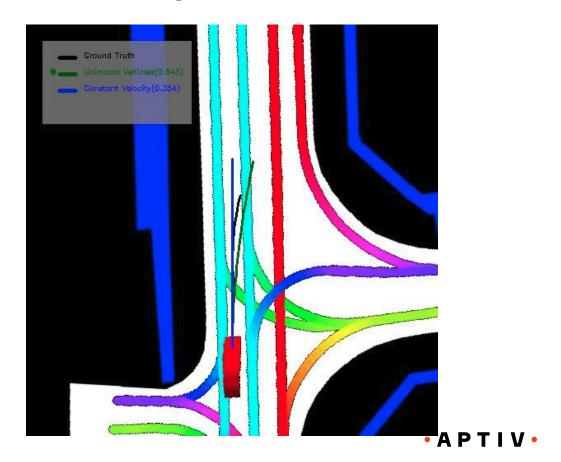
RESULTS (TRAIN TRACKS: 300K)

Constant Velocity > Unimodal Predicted: Constant Velocity 💉

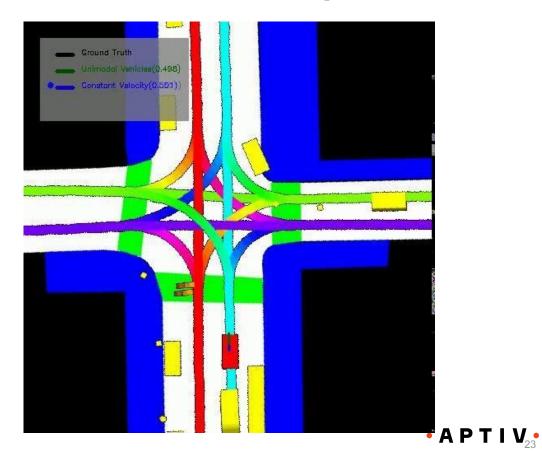


RESULTS (TRAIN TRACKS: 300K)

Constant Velocity > Unimodal Predicted: Unimodal x

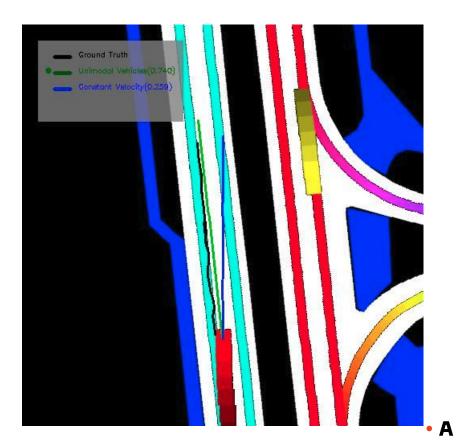


VISUALISATION (TRAIN TRACKS: 300K)



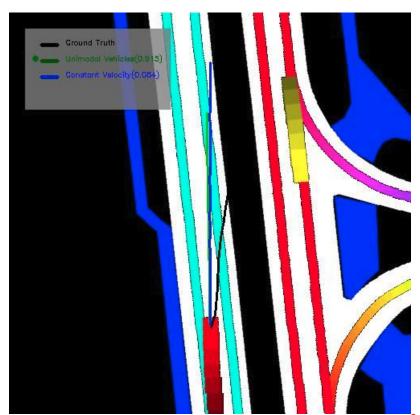
RESULTS (TRAIN TRACKS: 3MIL)

Unimodal > Constant Velocity Predicted: Unimodal 🗸

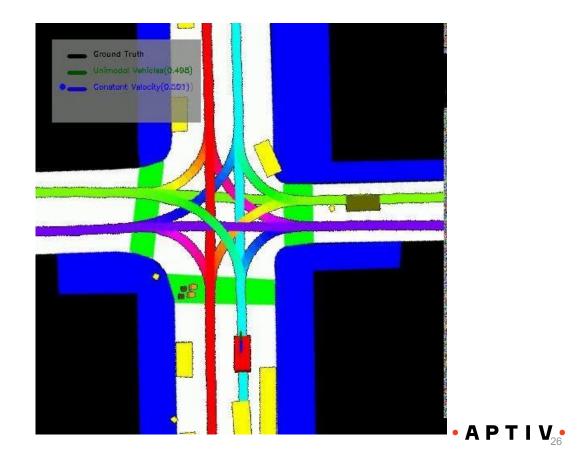


RESULTS (TRAIN TRACKS: 3MIL)

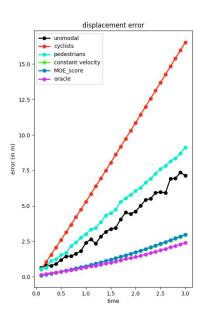
Constant Velocity > Unimodal Predicted: Constant Velocity *

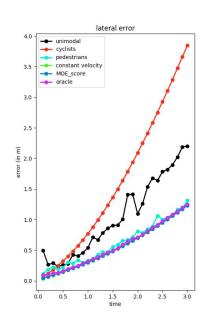


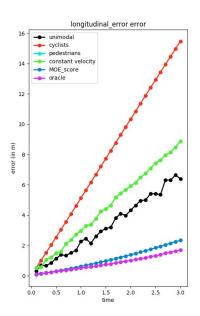
VISUALISATION (TRAIN TRACKS: 3MIL)



EXPERTS: VEHICLES, PEDESTRIAN, CYCLISTS, CONSTANT VELOCITY (TRAIN TRACKS: 5MIL)

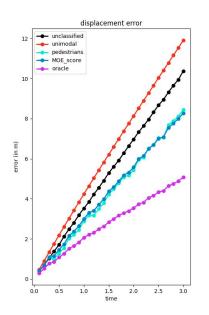


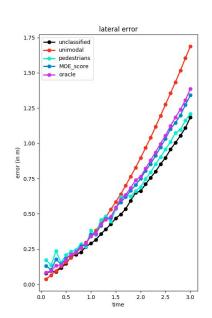


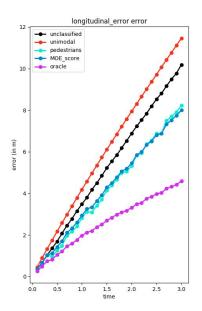


Other experiments: 600k, 3 million

EXPERTS: VEHICLES, PEDESTRIAN, UNCLASSIFIED (TRAIN TRACKS: 6MIL)







CONCLUSION

- End-to-End Model does not provide improvement over Vehicles Model
- Frozen MoE Model (Experts: Constant Velocity, Unimodal Vehicles) does not provide improvement over Unimodal Vehicles model
- Frozen MoE Model (Experts: Unimodal Vehicles, Unimodal Pedestrians, Unimodal Unclassified) provides average score values similar to the Pedestrian Model, and better scores than the Unimodal Vehicles and Unimodal Unclassified Models (computed on all tracks)
- Future work:
 - Hyper-parameter optimisation
 - Distance function based on angle between trajectories instead of smooth L1
 - Different Architecture

IMPACT

- Mixture of experts model automatically chooses expert for each track
 - Eliminates the need to have different model for different types of tracks
- Created initial architecture for such an approach that can be used as a building block for further development

ACKNOWLEDGEMENT

Corina (Advisor)

- Eric
- Freddy
- Tung Phan
- Sang Uk Lee

QUESTIONS?

