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PREDICTION TEAM

e Model possible future states of the
world

e Planner uses to enable safe and
natural driving by better anticipating
Interactions with others

e Flexible models support different
behaviors in multiple cities/countries
(Boston, SG, Vegas)
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OVERVIEW

e We use different kind of models based on
o Physics
o Micro-planners
o Machine learning

e Each of these models are generally well-suited for different
kinds of motion

e (Can we leverage these models to hopefully improve our

results?
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TRAJECTORY PREDICTION MODEL
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TOWARDS MULTIPLE PREDICTIONS

e |mpossible to predict exact
trajectories for vehicles

e |[s it possible to leverage the
models in our repository along
with their probability to improve
prediction

e Could help planning team develop 3
risk-aware algorithms
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1. Multimodal Trajectory Predictions for Autonomous Lz] - Z Im:'m* log pzm: (5)
Driving using Deep Convolutional Networks (Cui et al.) m=1
2. (Jacobs et al.)
' Predicted
Ground Truth Trajectory for
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e [1]: FCN for multi-modal For the mir
. . moade
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e [2]: Mixture of Expert based
architecture




APPROACHES

1. END-TO-END MIXTURE-OF-EXPERTS MODEL

2. FROZEN MOE MODEL

*APTIV:



END-TO-END MIXTURE-OF-EXPERTS (MOE)
MODEL R
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END-TO-END MODEL R —

k
L(Z,T) = Z piL(Ex(Z),7)

Expert-1
Z: input to the network

Expert-li
T : ground truth
E_Kk(.): output by a specific expert-k

*APTIV:




EXPERTS: CONSTANT VELOCITY,
(TRAIN TRACKS: 300K VEHICLES
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EXPERTS: CONSTANT VELOCITY, VEHICLES
(TRAIN TRACKS: 300K VEHICLES)
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RESULTS
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RESULTS
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CONCLUSION

e Individual experts perform worse than the
unimodal ones

e Mode collapse
o Constant velocity is the dominant prediction
o Model complexity of two models are different

e |everage existing models to learn a
probability distributions over driver types




FROZEN MOE MODEL
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FROZEN MOE MODEL
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Predicted Trajectory for it"

TRAINING THE DISCRIMINATOR e

e Proposes a loss function just for discrimingtor training [1]

Ground

k™ = argmin;ecqy,2, gy dist(Tij, Tj) —— T

class | sovf
ﬁz’j R § | [i—i~ log(pim)

ie{1,2,....k} Probability
- » For the mth
mode

e In our particular case, the dist function is a smooth L1-norm
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EXPERIMENTS

1. Experts: Constant Velocity, Unimodal
Train Tracks: 300K, 3 Million
Training Data: Vehicle Tracks

2. Experts: Vehicles, Pedestrian, Cyclists, Constant Velocity
Train Tracks: 600k, 3 Million, 5 Million
Training Data: Vehicle, Pedestrian and Cyclists Tracks

3. Experts: Pedestrians, Vehicles, Unclassified
Train Tracks: 6 Million
Training Data: Pedestrians, Vehicles, Unclassified Tracks
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EXPERTS: CONSTANT VELOCITY, VEHICLES
(TRAIN TRACKS: 300K)
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Unimodal > Constant}elocity
Predicted: Unimodal y¢'
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300K)

RESULTS (TRAIN TRACKS

Constant Velocity > Unimodal
Predicted: Constant Velocity
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RESULTS (TRAIN TRACKS: 300K)

Constant Velocity > Unimodal
Predicted: Unimodal x
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https://docs.google.com/file/d/1PRt3kfozDSiwKeUl8yKk0MobY6YdPZEP/preview

RESULTS (TRAIN TRACKS: 3MIL)

Unimodal > Constant Velocity
Predicted: Unimodal x/e
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RESULTS (TRAIN TRACKS: 3MIL)

Constant Velocity > Unimodal
Predicted: Constant Velocity X%
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VISUALISATION (TRAIN TRACKS: 3MIL)
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https://docs.google.com/file/d/1IsquIkgFTj9F8CEgWrpfMdsjcnSo1K0T/preview

EXPERTS: VEHICLES, PEDESTRIAN, CYCLISTS, CONSTANT VELOCITY
(TRAIN TRACKS: 5MIL)
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Other experiments: 600k, 3 million
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EXPERTS: VEHICLES, PEDESTRIAN, UNCLASSIFIED
(TRAIN TRACKS: 6MIL)
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CONCLUSION

e End-to-End Model does not provide improvement over Vehicles Model

e Frozen MoE Model (Experts: Constant Velocity, Unimodal Vehicles)
does not provide improvement over Unimodal Vehicles model

e Frozen MoE Model (Experts: Unimodal Vehicles, Unimodal
Pedestrians, Unimodal Unclassified) provides average score values
similar to the Pedestrian Model, and better scores than the Unimodal
Vehicles and Unimodal Unclassified Models (computed on all tracks)

® Future work:

o Hyper-parameter optimisation
o Distance function based on angle between trajectories instead of smooth L1

o Different Architecture
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IMPACT

e Mixture of experts model automatically chooses expert for

each track
o Eliminates the need to have different model for different types of tracks

e Created initial architecture for such an approach that can
be used as a building block for further development
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